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I. INTRODUCTION

Horns were among the original antennas used when electromagnetic
radiating systems ventured into the microwave region. One needs
only to refer to the recent IEEE monograph edited by Love[1] to realize
that horns remain of great practical value and interest. The earliest

horns were developed by flaring the waveguide walls using planar surfaces.

The so-called optimum gain horn as introduced by Schelkunoff[2] is bas-
ically such a horn whose dimensions are optimized for maximum on-

axis gain. This is accomplished by adjusting the horn length and/or
flare angle until the diffractions from the aperture edges add in

phase with the direct radiation associated with the horn throat. Note
that the optimum gain horn will normally be used here for comparison
purposes in that most standard gain horns are of this type. However,
the term, conventional horn, will refer to a given horn without the

aperture match modification,

The E-plane pattern associated with an optimum gain horn typically
has high side and back lobes which can be directly attributed to the
large edge-diffracted fields. In order to improve this situation,
dual-mode{3] and corrugated[4] horns are designed to greatly reduce
the fields incident on the aperture edges and conseguently the associ-
ated diffractions. Using the dual-mode horn philosophy, a discontinuity
is introduced at a position within the horn where two modes can exist;
then, the horn lengths are adjusted such that the total field (i.e.
the superposition of the two modes) at the aperture edges is very
small compared to the maximum aperture field magnitude. Obviously,
the frequency bandwidth of such a design is decreased as compared
to an optimum gain horn. Nevertheless, one can achieve improved pat-
tern performance over about a ten percent frequency band using a
carefully designed dual-mode horn.

Corrugated horns provide a means to reduce the edge diffracted

fields over a broader frequency band by using specially designed
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corrugated surfaces on the interior horn walls which force the energy
of f the surface. With a sufficiently long corrugated horn, one can
expect improved pattern performance over nearly a 2:1 bandwidthl4].
In that the corrugated surfaces force the energy away from the horn
walls in the E-plane and the boundary conditions accomplish the same
thing in the H-plane, it is not surprising that the principal plane
patterns are almost identical. As a result, a corrugated horn makes
an excellent circularly polarized radiator with superior axial ratio
characteristics. On the other hand, the introduction of the cor-
rugations creates additional reflections which tend to modify the
horn impedance. With a proper design as described in Ref. [4], one
can cause these reflections to cancel the mismatch at the throat

and obtain a VSWR of less than 1.2 over a 1.7:1 frequency band.
Given that an application can afford the complexities of such a
design and construction, the corrugated horn can provide signifi-
cantly better pattern performance than a conventional horn over a
broad frequency band.

A novel horn design is introduced in this paper as shown in
Fig. 1 which eliminates the troublesome edge diffractions not by
reducing the incident field on the aperture edges but by reducing
the aperture diffraction itself. This is accomplished by adding
aperture curved surfaces which form smooth matching sections between
the horn modes and free space radiation. With this in mind, this
new horn type has been designated an "aperture-matched" horn.

[I. PATTERN PERFORMANCE

Although the modification suggested here can be applied to a
wide variety of horns, it is illustrative to consider a conventional
pyramidal horn such as shown in Fig., 2. Considering typical principal
plane patterns of such a horn as depicted in Fig. 3, the H-plane
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Fig. 2. Pyramidal horn geometry.
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pattern is far superior to the E-plane pattern (i.e., much simcother
and lower side lobes). This occurs in that the boundary conditions
force a null field to be incident upon the edges creating the H-plane
pattern which greatly reduces the associated diffractions. As dis-
cussed in the previous section, modern horn designs have attempted

to create a null field incident on the edges creating the E-plane
pattern.

In order to examine the E-plane pattern of a pyramidal horn
in detail, let us consider the geometrical theory of diffraction
(GTD) analysis suggested by Russo, et. al.[5]. Using this approach
the pattern is dominated by three terms (i.e. direct throat radiation
plus two edge diffraction terms) as illustrated in Fig. 4. In that
the throat region appears as an electrically small radiator, its
pattern is, as expected, smooth across the horn flare angle and zero
otherwise. On the other hand, the aperture edge diffractions are
widely separated from the throat and each other such that one should
expect a rapid interference pattern especially if the edge diffrac-
tions are of significant magnitude as in the conventional E-plane
horn pattern case. The basic first-order diffraction equation which
describes this situation is given by [6]

- BT - Brd s Ads) e 3k (1)

-

where £' is the field incident on the edge, D{d,s,¥) is the diffraction

coefficient associated with the appropriate geometry, and A(d,s)
is the diffracted field spread factor. Note that d is the distance
from the source to the diffraction point, s is the distance from
the diffraction point to the receiver, and + represents the various
angular dimensions associated with the given geometry. With Eq.

(1) in mind, it is clear that one has two options if “e wishes to
reduce the diffracted field:

1. Reduce the magnitude of the field incident
on the edge.

?. Modify the structure in order to reduce the
magnitude of the diffraction coefficient and/or

spread factor. 6
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Fig. 4. GID terms for horn E-plane pattern calculation.




As stated earlier, the dual-mode and corrugated horns achieve
improved pattern performance by using the first option. However, it
appears that such horn designs are trading off one virtue for another,
i.e. the dual-mode horn is more frequency sensitive, and the corrugated
horn is more complex and costly. In order to obtain a horn with
improved pattern and impedance performance without greatly sacrificing
the size, weight, bandwidth and cost, let us consider the second
option (i.e. reduce the magnitude of the diffraction coefficient).
This can be done by modifying the horn as illustrated in Fig. 1 by
attaching curved surface sections to the aperture edges so that the
resulting junction is smooth to the touch. These curved surface

sections can be arbitrary smooth convex shapes; additionally, the

cross-sectional shape can vary along the length of the edge. However,
the following discussions are based on elliptic cylinder sections

e AR

in that they can be theoretically analyzed.

Before applying this modification to a conventional horn, it
is informative to consider the basic structure shown in Fig. 5, which
consists of a magnetic line source mounted on a planar surface that
is terminated by an elliptic cylinder. The diffraction coefficient
associated with this structure is numerically analyzed using the
method suggested by Chuang and Burnside[7]. Some examples of this
study are shown in Figs. 6-12 where the various parameters are defined
in Fig. 5. In Fig. 6, the magnitude of the diffraction coefficient
(H)%Qiin Eq. (1)) is plotted as a function of angle for various cir-
cular cylinder radii. It is apparent from these results that the
diffracted field from the terminated surface is reduced as the cylinder
radius is increased. For a given semi-minor elliptic dimension (a),
the diffraction coefficient magnitude is reduced, especially in the
lit region (-9OO'+'900), as the semi-major dimension (b} is increased
as shown in Fig. 7. As shown in Fig. 8, the magnitude of the diffrac-
tion coefficient is reduced more for the terminated surface if the
magnetic line source is located away from the junction. In order to
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Fig. 5. Magnetic line source mounted on a ground plane
terminated by an elliptic cylinder.
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compare the reduction in the diffraction coefficient magnitude as

a function of frequency, it is shown in Figs. 9 and 10 for various
diffraction angles. Note that the reduction is much greater in the
1it region (-90°<¢<90°) than the shadow region (90°<¢f270°). The
diffraction coefficient magnitude over a broad frequency band for

the terminated surface is shown in Figs. 11 and 12 for various source
positions, cylinder radii and diffraction angles. It is interesting
to note that even a small radius cylindrical section provides a great
improvement in the 1it region; whereas; a large radius is needed

to significantly reduce the magnitude of the diffracted field in the
shadow region.

Based on the reduction of the diffraction coefficient magnitude,
it appears appropriate to demonstrate the improvement obtained by
adding this modification to a conventional horn. Recall that Russo,
et. al.[5] used the edge diffraction solution to obtain the E-plane
pattern of a conventional horn, the same mechanisms are appropriate
to analyze the "aperture-matched" horn if the planar/curved surface
diffraction coefficients are substituted for the edge terms. Using
the three GTD terms illustrated in Fig. 13, some calculated and measured
E-plane horn patterns are shown in Figs. 14 and 15. Note that even
though the background reflection level of our anechoic chamber ex-
ceeded that of the "aperture-matched" horn back lobe as illustrated
in Fig. 14b, its patterns are much smoother and the back lobe is
greatly reduced compared to a conventional horn. Actually this
curved surface modification provides this improvement by forming
an aperture match between the horn modes and free space such that
the energy flows essentially undisturbed across the junction, around
the curved surfaces, and into space. As a consequence, the aperture
reflections back into the horn are negligibly small for this geometry
as will be discussed later.

In that E-plane pattern illustrated in Fig. 15 is reminiscent
of that obtained using a corrugated horn, it is interesting to com-
pare the "aperture-matched" and corrugated horns assuming that they

13
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(a) GEOMETRY (b) GTD TERMS

Fig. 13. “Aperture-matched”horn geometry and GTD pattern analysis
model.
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both fit within the same volume. Note that the corrugated horn and
associated data are taken from Ref. [4]. Various E-plane patterns
are shown in Fig. 16, which illustrate that the "aperture-matched" "
horn has a much smoother pattern and lower back lobe than the conven-
tional horn; yet, it does not provide the same reduction in the wide z
side lobes as compared with the corrugated horn. This implies that
one would have to increase the overall horn size in order to achieve
nearly the same E-plane pattern. Provided the aperture match and
corrugated horn modifications are only applied to the E-plane edges,

the H-plane patterns of the "aperture-matched" and corrugated horns
are virtually the same as that for a conventional horn except for
a greatly reduced back lobe level. Using the same horns, the back
lobe level as a function of frequency is shown in Fig. 17. At the
lower end of the frequency band the corrugated horn has a lower back
lobe; whereas, the "“aperture-matched" horn has superior performance
at the high end. Both the "aperture-matched" and corrugated horns

are significantly better than the conventional horn. The beamwidth
for the various horns is illustrated in Fig. 18. As one might expect
the beam width for the conventional horn is smallest in that it has

a uniform distribution across the complete aperture plane; whereas,
the corrugated and "aperture-matched" horns have tapered distribu-
tions.

What about the frequency behavior of the "aperture-matched"
horn? In order to answer this question, let us examine the frequency
dependence of the diffraction coefficient alone as shown in Figs.
9-12 assuming that the source and receiver positions and cylinder
radius remain fixed. As observed previously, the planar/curved sur-
face diffraction coefficient magnitude is much smaller than that for
the half plane provided the cylinder radius is greater than a half
wavelength. So one might expect that the "aperture-matched" horn
has much better frequency performance than a dual-mode, corrugated,
or even conventional horns. This statement is justified based on
the E-plane horn patterns shown in Fig. 19,

22
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Fig. 16. Various E-plane horn patterns. The “aperture-

matched" horn pattern is calculated and the
others are measured.
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The physical Timitations of the "aperture-matched" horn re-
mains a concern in that the curved surfaces may significantly increase
the outside dimensions of the horn. To partially solve this size

and weight problem, it's suggested that quadrant elliptic sections
1 be attached to the aperture edges such as illustrated in Fig. 20.

Using such structures the aperture width is not greatly increased,
and yet one obtains superior E-plane patterns.

If one wishes very low side lobes, he might consider using

curved surface sections on a normal corrugated horn. If even lower
side lobes are desired, one could even corrugate the curved surface

TR Y S e SOl 7T e ey

sections. In any event, if one corrugates the horn or not, it is

apparent that the coupling between horns which are not facing each é
other will be reduced using the “aperture-matched" horn. In fact, §
it provides an excellent modification for flush mounted antennas %
where coupling is a problem. §

ITI. TIMPEDANCE PERFORMANCE

As presented in the previous section the aperture reflection
back into the horn is greatly reduced using the "aperture-matched"
horn. In that the aperture reflection is only one of two significant
terms making up the normal horn impedance, the throat reflection, L
now, remains as the dominant contributor. Using the procedure suggested '
by Terzuoli, et. al[8], one can also reduce the throat reflection
by adding a throat matching section as shown in Fig. 17. Note that
the curved section in the throat forms a smooth transition between
the waveguide and horn walls. Such a throat section is available
on a NARDA* standard gain horn, Simply using the NARDA horn,
its impedance was measured across X-band, and the results are shown
in Fig. 22. In that the throat reflection is negligible compared

Horn manufactured by:

Narda Microwave Corporation
Plainview, New York
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to the aperture reflection, one obtains a relatively small VSWR across
the frequency band. On the same figure, the horn impedance is shown
with small circular cylinder sections added to the NARDA horn, It

is very apparent from these results that the "aperture-matched" horn
with a modified throat has superior impedance performance compared

to either a conventional horn or one with a modified throat section.
In addition, it is felt that an even greater bandwidth than shown
in Fig. 22 can be achieved using a ridged waveguide to feed the horn.

IV.  CONCLUSIONS

The basic electromagnetic characteristics of a new horn design
have been presented in this paper. It is known as an "aperture matched"
horn in that curved surfaces are attached to the aperture edges in
order to form a matching section between the horn modes and free
space radiation. Although the curved surface sections treated in
this paper are portions of elliptic cylinders as shown in Fig. 13,
they can be arbitrary smooth, convex shapes provided that they are
attached in such a way to form a smooth junction at the original
aperture edges. Such a horn provides superior E-plane patterns,
input impedance, and frequency characteristics as compared with a
conventional horn (i.e. the same horn without the aperture matching
sections). The size and weight of the "aperture-matched" horn are
somewhat increased over those of a conventional horn. However, this
increase can be kept to a minimum if quadrant curved sections are
used as shown in Fig. 20. Due to the simplicity of the modification
for such a horn, the additional construction costs should be minimal.
Further, if one uses elliptic cylinder sections, then the "aperture-
matched" horn can be analyzed, as done here, using the numerical
metho¢ suggested by Chuang and Burnside [7] such that the design
costs should not exceed those of a conventional horn.

A very beneficial aspect of the "aperture-matched" concept
is that it can be used as a retrofit to improve the electromagnetic
performance of virtually any horn.
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